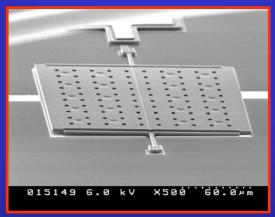
Activation barrier scaling and switching path distribution in micromechanical parametric oscillators

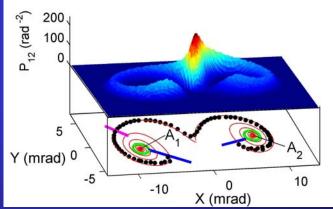
Ho Bun Chan

Corey Stambaugh

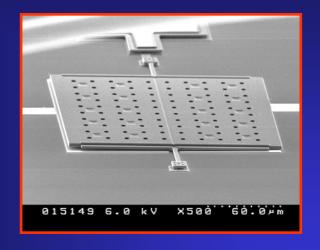
Mark Dykman

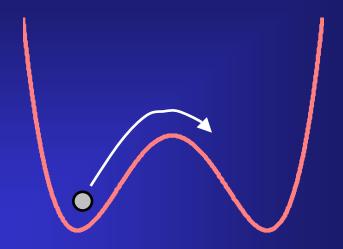
Michigan State University





Outline

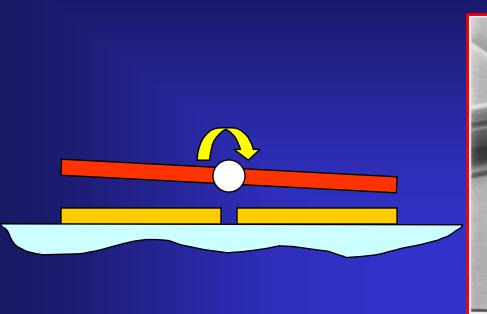


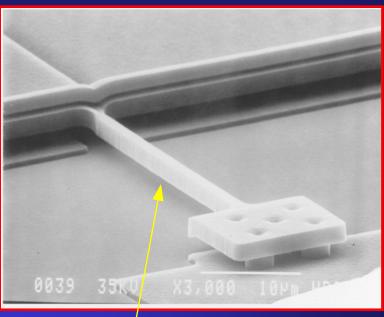


what are the generic features of fluctuations in systems far from equilibrium?

- Nonlinear micromechanical parametric oscillator: multistability and bifurcations.
- Fluctuation induced switching between dynamic states.
- Switching path distribution for multivariable system:
 - Direct measurement of most probable switching path
 - Demonstration of the lack of time reversal symmetry.
- Universal scaling of activation barrier near the bifurcation point.

micromechanical torsional oscillator



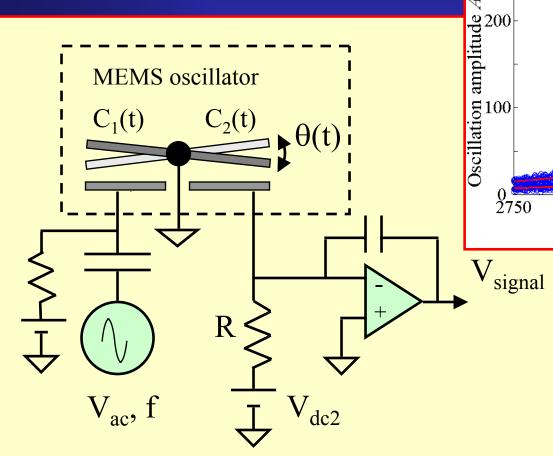


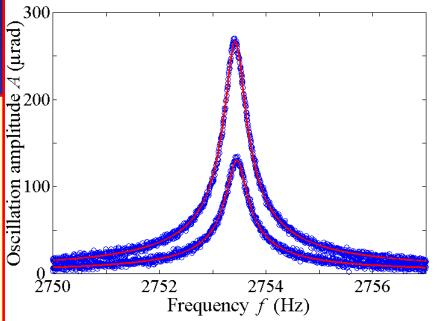
0045 35KU X160 100 WD98

Torsional rod cross section: 1.5 x 2 μm²

poly-Si plate: 500 μm x 500 μm x 3.5 μm

Simple Harmonic Oscillations



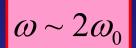


At small excitation, response depends linearly on excitation voltage

Q = 7150

Parametric resonance

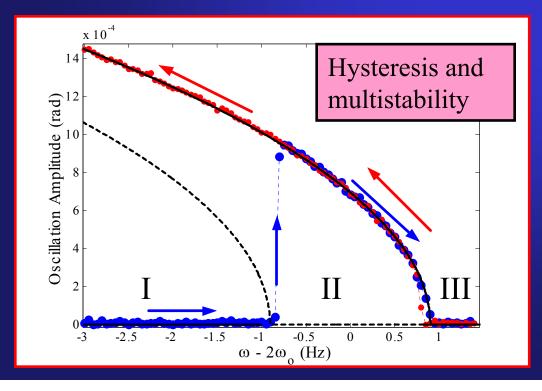
$$\ddot{\theta} + 2\gamma\dot{\theta} + [\omega_0^2 + \frac{k_e}{I}\cos(\omega t)]\theta = -\alpha\theta^2 - \beta\theta^3$$

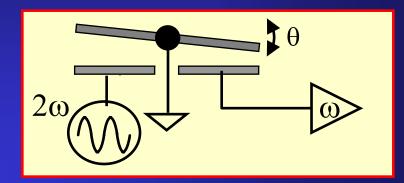


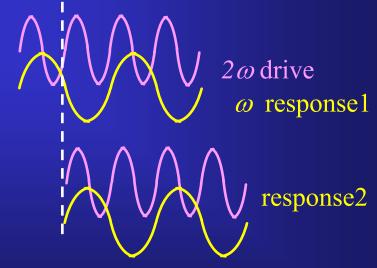
Electrostatic torque

$$\tau_E = \frac{1}{2} \frac{dC}{d\theta} V^2$$

$$\tau_{E}(\theta) = \tau_{E}(0) + \frac{\partial \tau_{E}}{\partial \theta} \theta + \frac{1}{2} \frac{\partial^{2} \tau_{E}}{\partial \theta^{2}} \theta^{2} + \frac{1}{6} \frac{\partial^{3} \tau_{E}}{\partial \theta^{3}} \theta^{3}$$

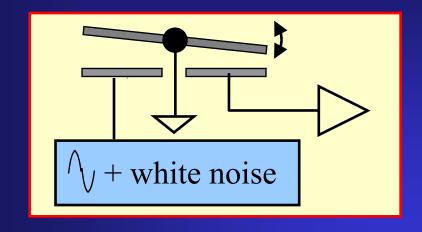


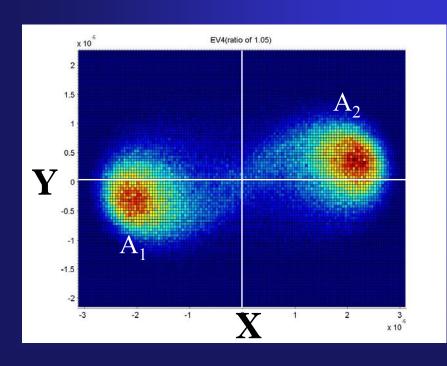


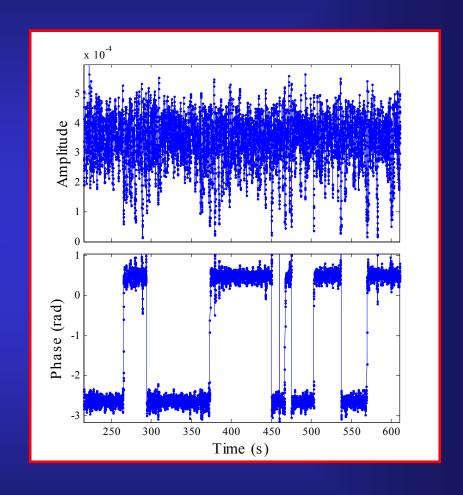


Two stable responses at ω

FLuctuation induced phase slips in a parametrically driven oscillator



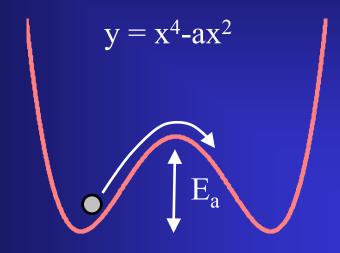




Fluctuation induced switching

System in thermal equilibrium

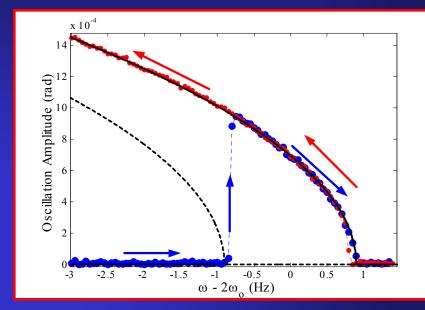
Nonequilibrium system



Kramers

$$\Gamma \propto \exp\left(-\frac{E_a}{T}\right)$$

$$E_a \propto a^2$$



$$\Gamma \propto \exp\left(-\frac{R}{I_n}\right)$$

$$I_n$$
 = noise intensity

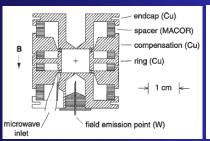
$$R \propto \Delta v^{\alpha}$$

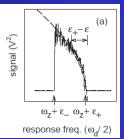
- Dykman & Krivoglaz '79
- Lehmann, Reimann & Hanggi '00
- Maier & Stein '01
- Dykman, Schwartz & Shapiro '05

Noise activated escape in periodically driven systems

Penning traps

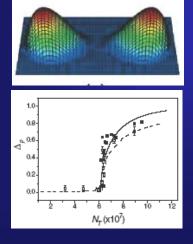
• Lapidus, Enzer and Gabrielse '99



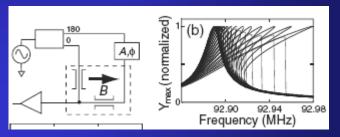


Magneto-optical traps Many body effects

• Kim et al. '05

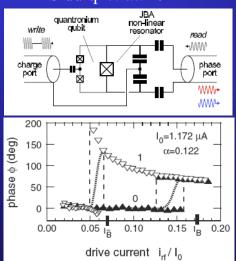


nanomechanical beams $< 100 MHz, Q \sim 10,000$ Aldridge and Cleland '05

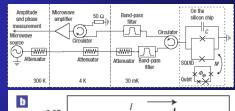


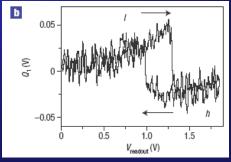
rf driven Josephson junctions > GHz, $Q \sim 100$

• Siddiqi et al. '04



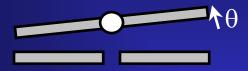
• Lupascu et al. '07



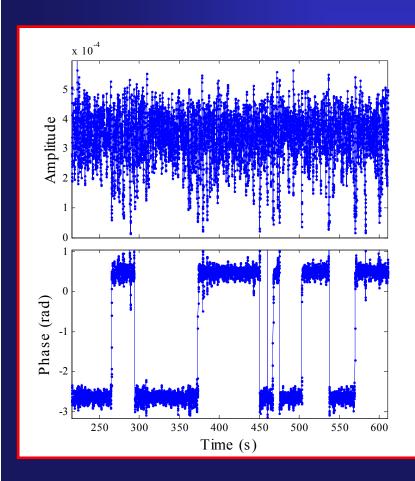


Transformation to rotating frame: 2 dynamical variables

$$\ddot{\theta} + 2\gamma\dot{\theta} + [\omega_0^2 + \frac{k_e}{I}\cos(\omega t)]\theta = -\alpha\theta^2 - \beta\theta^3 + N(t)$$

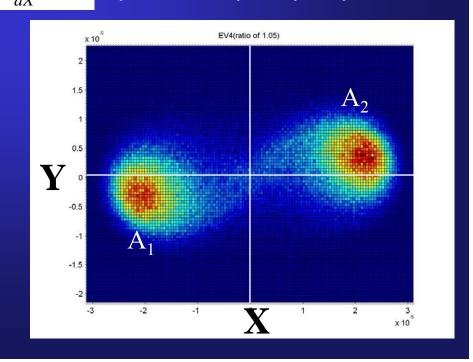


$$\theta = aX \cos\left(\frac{\omega t}{2}\right) - aY \sin\left(\frac{\omega t}{2}\right)$$
$$\frac{d\theta}{dt} = bX \sin\left(\frac{\omega t}{2}\right) + bY \cos\left(\frac{\omega t}{2}\right)$$



$$\dot{X} = -X + \frac{dg}{dY} + \xi_1(t) \qquad g(X,Y) = \frac{1}{2} \left(X^2 + Y^2 \right) \left[\Omega + \left(X^2 + Y^2 \right) \right] + \frac{1}{2} \zeta \left(Y^2 - X^2 \right)$$

$$\dot{Y} = -Y + \frac{dg}{dX} + \xi_2(t) \qquad \text{Dykman, Maloney, Smelyanskiy, Silverstein '98}$$

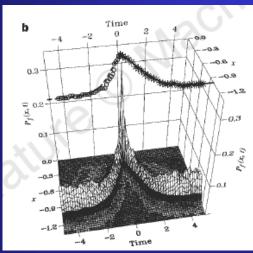


Most probable switching paths: Theory

- Linear systems: Onsager and S. Machlup '1953
- General Markov system: Wentzel and Freidlin '1972
- Resonantly driven Duffing oscillator (no detailed balance): Dykman and Krivoglaz '1979
- Parametrically driven oscillator (no detailed balance): Dykman, Maloney, Smelyanskiy and Silverstein '1998

Fluctuation Paths: experiment

Luchinksy and McCintock, Nature 1997

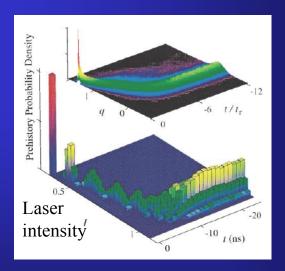


Electronic circuit simulation

Distinguishes fluctuation and relaxation motion from attractor to a specific point

Paths within the basin of an attractor

Hales, Zhukov, Roy, Dykman, PRL 2000



Dropout events in laser with feedback

1 dynamic variable: laser intensity

Paths of fluctuation induced switching

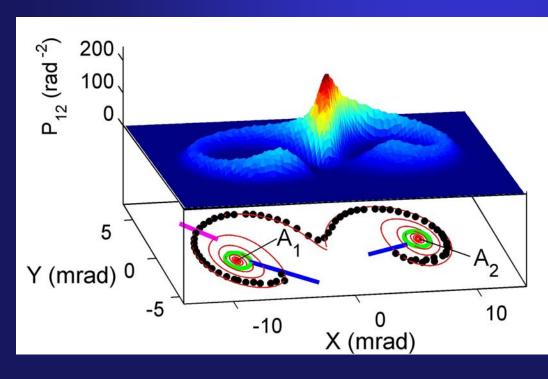
H. B. Chan, M. I. Dykman, C. Stambaugh, PRL 100, 130602 (2008).

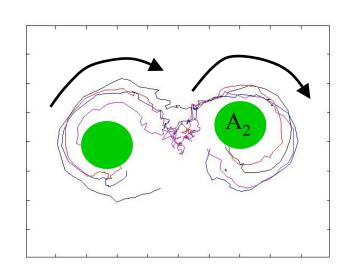
Switching Path Distribution

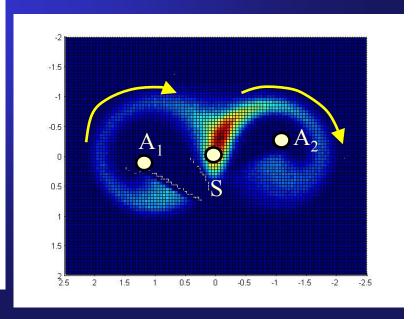
$$p_{12}(\mathbf{q},t) = \int_{\Omega_2} d\mathbf{q}_f \rho(\mathbf{q}_f,t_f;\mathbf{q},t \mid \mathbf{q}_i,t_i)$$

probability density at q, t, q_f , t_f , given that it was at q_i at t_i . q_i within l_d of A_1 , q_f within l_d of A_2

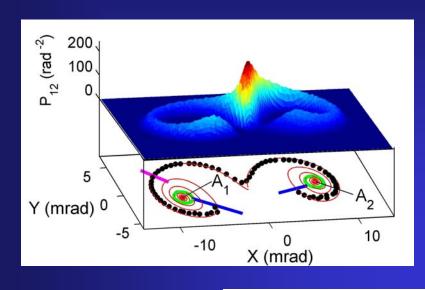
System start close to A₁ and later arrive close to A₂





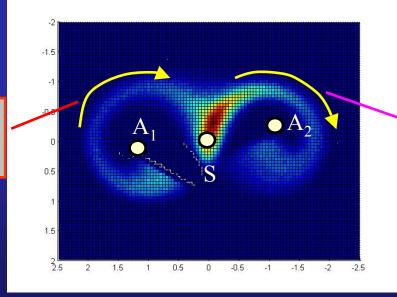


Generic features of switching path distribution



- Switching trajectories form narrow tubes centered on <u>Most Probable Switching Path</u>
- Diffusion motion around saddle: strong peak in SPD
- Gaussian cross section
- Constant probability current

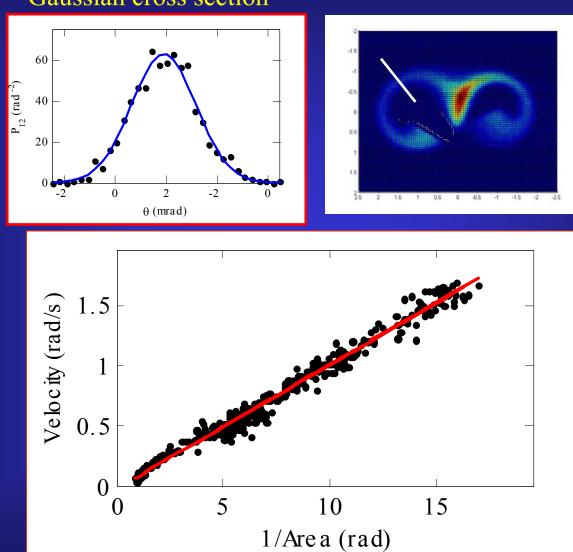
Uphill: the appropriate fluctuation brings the system from attractor A₁ to saddle S



downhill: deterministic, fluctuation-free path from saddle S to attractor A₂

Constant probability current along most probable switching path

Gaussian cross section



 $A_{cross section} x$ velocity = switching rate

Switching Paths for systems with time reversal symmetry

Time reversal symmetry

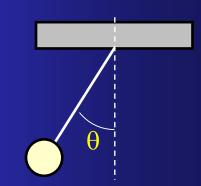
most probable "uphill" fluctuational path = time reversed fluctuation-free path

Example of time reversal: linear oscillator

$$\frac{d^2\theta}{dt^2} + 2\Gamma \frac{d\theta}{dt} + \omega_0^2 \theta = 0$$

$$\mathbf{t} \longrightarrow -\mathbf{t} \qquad \frac{d^2\theta}{dt^2} + 2\Gamma \frac{d\theta}{-dt} + \omega_0^2 \theta = 0$$

 $\theta = d\theta/dt = 0$ (stable) $\rightarrow \theta = d\theta/dt = 0$ (unstable)



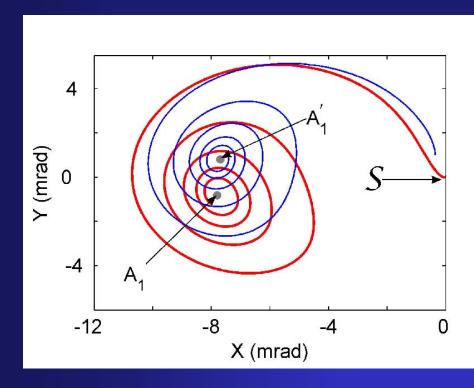
In overdamped particle in bistable potential,

"uphill" fluctuational path

time reversed fluctuation-free path

identical

Nonequilibrium oscillator: lack of time reversal symmetry

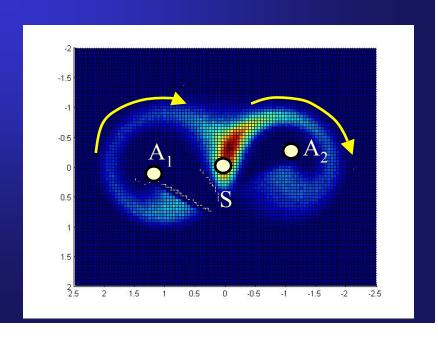


Differences from overdamped particle in bistable potential:

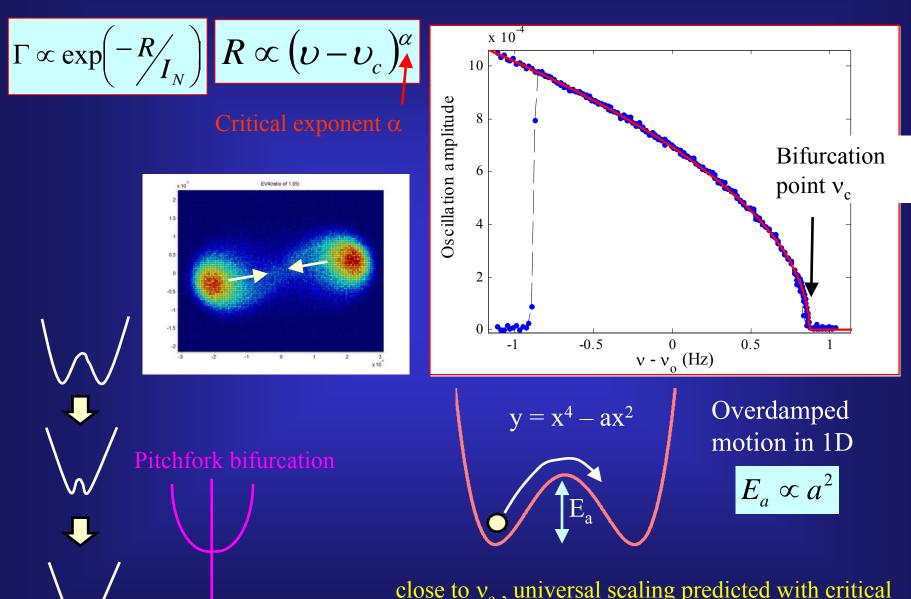
- "Uphill" fluctuational path ≠ time reversed fluctuation-free path
- Position of attractor shifted upon time reversal $\text{Attractor is an oscillating state, } d\theta/dt = 0$

Red: "uphill" fluctuational path

Blue: time reversed fluctuational-free path



Critical exponent in activation energy for parametric resonance



close to v_c , universal scaling predicted with critical exponent $\alpha = 2$ (Dykman *et al.* '98)

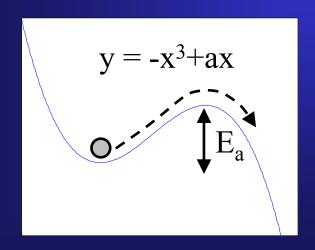
Activation barrier scaling for saddle node bifurcation

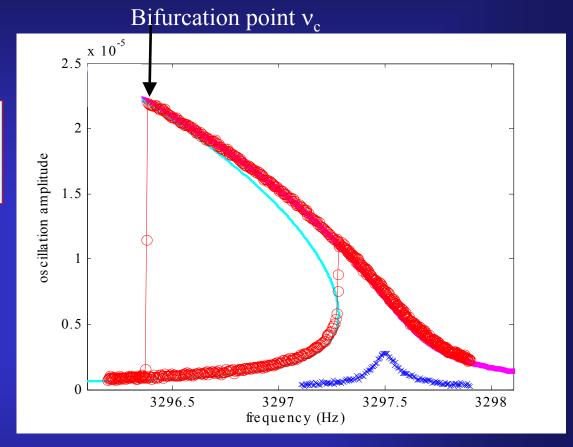
Critical exponent α

$$\Gamma \propto \exp\left(-c(\upsilon-\upsilon_c)^{\alpha}/I_N\right)$$

Near bifucation points:

Universal scaling with critical exponent $\alpha = 3/2$ (Dykman & Krivoglaz '79)

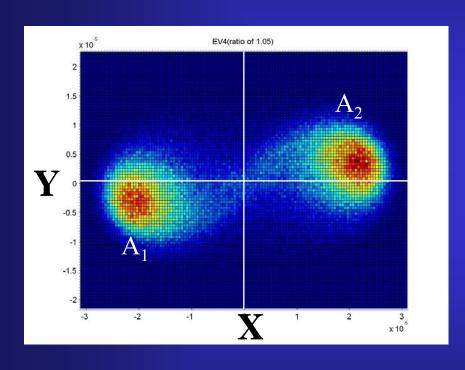


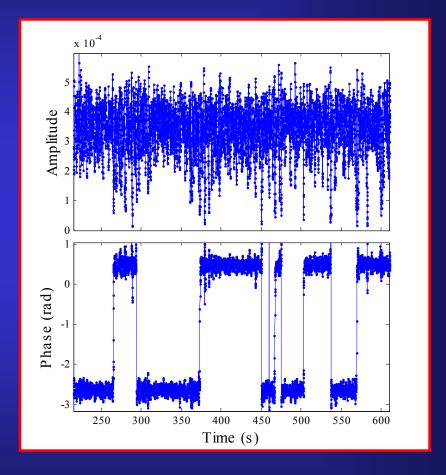


3/2 scaling expected to occur for all spinodal bifurcations:

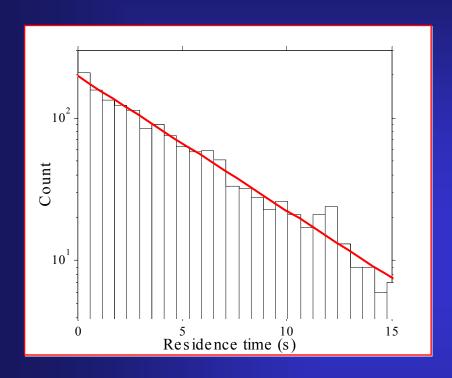
- RF driven Josephson junctions
- Nanomagnets driven by polarized currents
- Double barrier resonant tunneling structures.

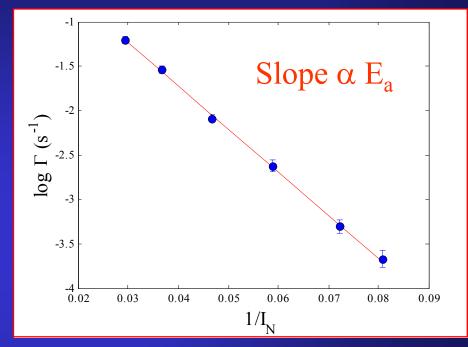
Fluctuation induced switching in parametric oscillator





Activated phase slip





Poisson's statistics:

exponentially decay histogram

→ Randomness in switching

Activated behavior

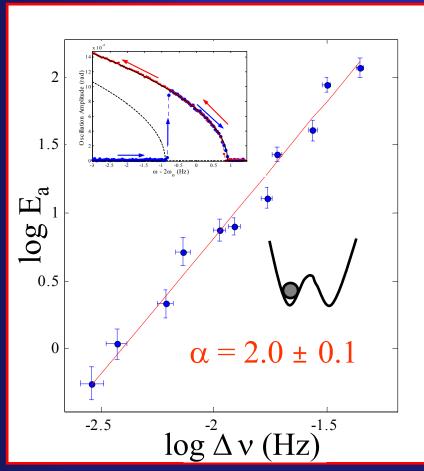
$$\Gamma \propto \exp\left(-\frac{E_a}{I_N}\right)$$

$$\log(\Gamma) = -\frac{E_a}{I_N} + C$$

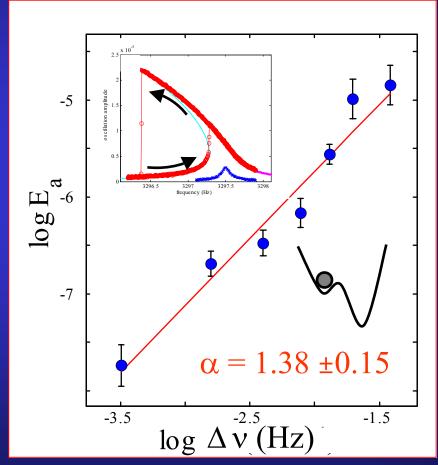
Two different scaling relations for activated switching in micromechanical torsional oscillator

Pitchfork bifurcation: parametrically driven oscillator

Saddle node bifurcation: resonantly driven Duffings oscillator



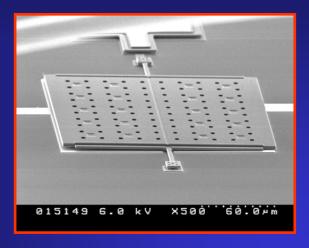
Chan & Stambaugh, PRL 99, 060601 (2007).

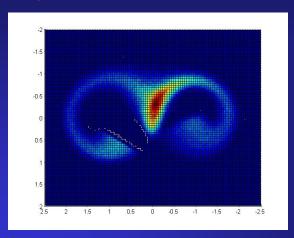


Stambaugh & Chan, PRB 73, 172302 (2006).

Consistent with universal scaling behavior (Dykman et al.)

Summary





- activated switching between coexisting states in a micromechanical torsional oscillator driven into parametric resonance.
- scaling of the activation barrier close to bifurcation points.
- measurement of the most probable switching path in 2 dimensions
 - **Switching Probability Distribution**
 - constant probability current along the path.
 - experimental evidence for lack of time reversal symmetry

Acknowledgement

Corey Stambaugh

• NSF DMR-0645448

• Mark Dykman (Michigan State University)