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(http://www.unsw.edu.au/)

Periodic stick-slip: elasticity and friction



  

Irregular stick slip in tectonics - Gutenberg & Richter

log N(>M) = a - bM 
        M = log A

Earthquakes in the world: 1995



  

Dalton & Corcoran
 - PRE63, 061312
 - PRE65, 031310

Granular matter under shear stress



  

mxi''(t) = kc[xi-1(t) - 2xi(t) + xi+1(t)] - kp[xi(t) - ia - tv] - f F(fxi'(t)) 

Experiment and nuerical,
Burridge, R. and Knopoff, L. 
Bull. Seis. Soc. Amer. 57, 341, 1967 

T. Kontorova and Y. I Frenkel
Zh. Eksp. Teor. Fiz. 8 (1934)

Large number of non-linear deterministic equations

Deterministic Models



  

Spring
constant kDrive angular

velocity v

Disk Inertia  I

Experiment: Grains sheared in a circular channel

• Annular cell, sheared by an overhead 
plate driven by a motor via a torsion 
spring

• 2mm glass beads
• Spring: 0.1 < k < 1 Nm/rad
• Inertia: 0.015 < I < 0.02 kg m2

• Motor & Gear: 10 -5 < ω <  50 rad/s
• Free dilation of the bed
• High angular resolution:
        35 µ rad at 10kHz



  

• Annular cell, sheared by an overhead 
plate driven by a motor via a torsion 
spring

• 2mm glass beads
• Spring: 0.1 < k < 1 Nm/rad
• Inertia: 0.015 < I < 0.02 kg m2

• Motor & Gear: 10 -5 < ω <  50 rad/s
• Free dilation of the bed
• High angular resolution:
        35 µ rad at 10kHz

Experiment: Grains sheared in a circular channel



  

     Record the angular position of the top plate with respect to the motor in time, from 
which compute velocity, acceleration and torque

At slow shear rate, solid-like behaviour, with  
intermittent and erratic motion
 - stick-slip phase  (crackling noise)
At increasing shear rate, solid-liquid transition 
to sliding phase at roughly 10-1 rad/s

Solid phase: irregular slip events
Liquid phase: continuous sliding
 - reflected in torque distribution:
Liquid phase: Gaussian fluctuations
 - collision dominated
Solid phase: asymmetric torque
 - correlated force chains

Plate velocity time series



  

Slip motion characterization: statistical distribution of slip parameters:
size s, duration  T,  instantaneous velocity v(t)

Objective: Description of the stochastic motion



  

I = inertia of the plate
k = spring constant
θ  = angular position
ω

D
 = driving (angular) velocity

F = fluctuating reaction torque

<F> = Average viscous force
F

μ
 = fluctuating component

I ̈= D t−F t , ,̇ , ...

Assume: F  , ̇=〈F ̇〉F 

Simple Langevin equation

Stochastic motion equation



  

Assumed to depend only on the velocity:
- independent of spring and driving

- parameters from a fit of experimental data

〈F  ̇〉=F0̇−20 ln1̇/0

Average viscous force
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Stress propagation takes place along a network of localized force chains. 
The fluctuating force results from correlated changes in the chains during motion.

Howell at http://www.phy.duke.edu/~bob/

Brownian walk bounded by some potential
 - Ornstein-Uhlenbeck process
 - Wiener-Khintchine yields power-spectrum

F d =FF 

dF

d 
=−aF

S k =〈∣∫Fe
−ikd ∣
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2D
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〈 ' 〉=D− '

Fluctuating force component
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Stress propagation takes place along a network of localized force chains. 
The fluctuating force results from correlated changes in the chains during motion.



  

dF

d 
=−aF 〈 ' 〉=D− '

Now all we need is a good η(θ) and we can
numerically integrate and simulate the system!

Stochastic motion equation

I = inertia of the plate
k = spring constant
θ  = angular position
ω

D
 = driving (angular) velocity

F = fluctuating reaction torque

<F> = Average viscous force
F

μ
 = fluctuating component

Assume: F  , ̇=〈F ̇〉F 

〈F  ̇〉=F0̇−20 ln1̇/0Obtain:

I ̈= D t−F t , ,̇ , ...
Simple Langevin equation



  

No adjustable parameters

 (Typical values:   a ~15 rad-1, D~0.01 N2/rad, F0~0.55 Nm, γ~0.2 Nms/rad, v0~0.03 rad/s) 
Just using Ieff ~ 2 I  a better agreement is obtained.

(Also Nasuno et al. (1997)  notice Meff ~ 1.7 M for slow drive periodic stick-slip).

Numerical integration: Results – Size and duration distributions
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 (Typical values:   a ~15 rad-1, D~0.01 N2/rad, F0~0.55 Nm, γ~0.2 Nms/rad, v0~0.03 rad/s) 
Just using Ieff ~ 2 I  a better agreement is obtained.

(Also Nasuno et al. (1997)  notice Meff ~ 1.7 M for slow drive periodic stick-slip).

Numerical integration: Results – Several Values of T=√I/K



  

A residual dependence of F(...) on θ'' is observed
 ⇒ Fr(θ) not truly a random Brownian noise

Numerical integration: Model shortcomings



  

Idea: to isolate the acceleration dependent torque term,
run the system at various velocities and accelerations!
  - calculate the inertial term as a function of velocity,
     and acceleration if necessary

Example: Free driven rotation of the top plate

Numerical integration: Model shortcomings – possible solution?



  

Idea: to isolate the acceleration dependent torque term,
run the system at various velocities and accelerations!
  - calculate the inertial term as a function of velocity,
     and acceleration if necessary

Problem: spring permits sqrt(I/K) oscillations
- too much variation

Numerical integration: Model shortcomings – possible solution?



  

Problem: spring permits sqrt(I/K) oscillations
- too much variation

Solution: use the axle as a torsion bar?
-- for average behaviour, maybe, but for us, no biscuit

GM present, 0-10-0 rad/sNo GM – oscillation and 'static' forcing

Worry: which is the torque applied to the top plate then,
that measured by the bar or that by the spring?

- need torsion sensor!

Numerical integration: Model shortcomings – possible solution?



  

Correlation between magnetic domain wall motion and 
force chains motion

Damping       Applied field      Demagnetizing field       Pinning

fluctuating force

Alessandro et al., Appl. Phys. 68, 2901–2908 (1990)    - ABBM model

Vt -kx w

〈w  x −w x '2 〉=D∣x−x '∣
F

x = magnetization 

Formal comparison with magnetic domain wall motion: 
Barkhausen Noise
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S. Zapperi, P. Cizeau, G. Durin and H.E. Stanley, 
 Phys. Rev. B58, 6353 (1998).

No inertial peak

Barkhausen Noise



  

A large class of dynamical instabilities can be quantitatively 
described by similar stochastic processes of the Brownian kind: 
similar phenomenology is observed in different systems, i.e. 
friction on solids, layers of crossing polymers, and completely 
different phenomena like  Barkhausen noise in ferromagnets.

Get one level down and derive stochastic forces and the friction law from  
ab-initio or effective description of the systems (e.g. force chains)

Write down the associated Fokker Planck equation

Describe fluctuations of physical quantities in different heterogeneous 
systems by general stochastic equations

Understand the onset of asymmetric and stable probability distributions in 
correlated systems

Torque sensor arriving – direct sensing of torque with no torsion spring will 
reduce stick-slip and allow better determination of viscous friction law

Summary and perspectives
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