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Introduction of the problem

Pain mechanism

Nociception, or physiological pain is
the afferent activity produced in the
peripheral and central nervous
system by stimuli that have the
potential to damage tissue
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Introduction of the problem

Pain mechanism

Nociception, or physiological pain is
the afferent activity produced in the
peripheral and central nervous
system by stimuli that have the
potential to damage tissue

This activity is initiated by
nociceptors, or pain receptors,
that can detect mechanical,
thermal or chemical changes,
above a set threshold

Once stimulated, a nociceptor
transmits a signal along the
spinal cord, to the brain
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Introduction of the problem

Analgesics

An analgesic is any member of the diverse group of drugs used to relieve
pain (achieve analgesia). Analgesic drugs act in various ways on the
peripheral and central nervous systems

Analgesics are commonly used in basic research and clinical practice but
the molecular mechanisms regulating their functions remain to be fully
elucidated
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Introduction of the problem

Markers of Pain

Need of objective markers to evaluate patient’s condition after
pharmacological treatment
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Introduction of the problem

Markers of Pain

Need of objective markers to evaluate patient’s condition after
pharmacological treatment

electrical brain activity induced by a specific stimulus

Evoked Response Potentials (ERPs)

Di Patti and Fanelli (University of Florence) Pain cycles June 2008 5 / 21



Introduction of the problem

The rodent whisker sensory system

Adult rats

Electrode array placed on the
surface of the somatosensory
cortex

Administration of different
anesthetics

Whisker stimulation

Record of ERP
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Introduction of the problem

The rodent whisker sensory system

Adult rats

Electrode array placed on the
surface of the somatosensory
cortex

Administration of different
anesthetics

Whisker stimulation

Record of ERP

Time

E
R

P

Rojas et Al, Am J Physiol Regul Integr Comp Physiol, 2006(291), R189-R196
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Introduction of the problem

The rodent whisker sensory system

Understanding these signals is
an open problem

We shall hereon speculate on
the role of noise which is
intrinsic to the system at hand
in the aim of providing a
possible interpretative
framework

Time

E
R

P
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Introduction of the problem

Question

Why do these oscillations exist?

Is there a molecular interpretation for their emergence?
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Introduction of the problem

Question

Why do these oscillations exist?

Is there a molecular interpretation for their emergence?

A stochastic model

interaction between the anesthetics and the target receptors

presence of diverse chemical species

pain receptors act as effective gates regulating the transmission of
pain
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Description of the model Chemical equations

Essential mechanisms

Binding process

T + RF
α−→ RT + E

Spontaneous detachment

RT + E
β−→ T + RF

RT RF

RF

β

αT

T
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Description of the model Chemical equations

Competition

Collision

H + T
σ−→ H + E

Transformation

H + T
γ−→ H + H

RT RF

RF

T

H

γ

σ

Di Patti and Fanelli (University of Florence) Pain cycles June 2008 9 / 21



Description of the model Chemical equations

Diffusion

T
δ1−→ E

E
η1−→ T

H
δ2−→ E

E
η2−→ H
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Description of the model Chemical equations

The complete model

T + RF
α−→ RT + E

RT + E
β−→ T + RF

H + T
γ−→ H + H

H + T
σ−→ H + E

T
δ1−→ E

E
η1−→ T

H
δ2−→ E

E
η2−→ H

N1 = nRT
+ nRF

N2 = nT + nH + nE

nRF
= N1 − nRT

nE = N2 − nT − nH

n = (nT , nRT
, nH)
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Description of the model Stochastic simulations

Gillespie algorithm

The Gillespie algorithm allows a discrete and stochastic simulation of a
system with a finite number of reactants because every reaction is
explicitly simulated

Steps:

0 Initialization: Initialize the number of molecules in the
system, reactions constants, and random number generators

1 Monte Carlo Step: Generate random numbers to determine
the next reaction to occur as well as the time interval

2 Update: Increase the time step by the randomly generated
time in step 1. Update the molecule count based on the
reaction that occurred

3 Iterate: Go back to step 1 unless the simulation time has
been exceeded
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Description of the model Stochastic simulations
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Analytical approach

Transition Probabilities

T+RF
α−→ RT + E
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Analytical approach

Transition Probabilities

T+RF
α−→ RT + E

nT

N2
× nRF

N1
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Analytical approach

Transition Probabilities

T+RF
α−→ RT + E

α × nT

N2
× nRF

N1
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Analytical approach

The Master equation

n
′ =







































(nT − 1, nRT
+ 1, nH)

(nT + 1, nRT
− 1, nH)

(nT − 1, nRT
, nH + 1)

(nT + 1, nRT
, nH)

(nT , nRT
, nH + 1)

(nT , nRT
, nH − 1)

d

dt
P(n, t) =

∑

n′ 6=n

T (n|n′)P(n′, t) −
∑

n′ 6=n

T (n′|n)P(n, t)
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Analytical approach

nT

N2
= φT (t) +

1√
N2

ξT

nRT

N1
= φRT

(t) +
1√
N1

ξRT

nH

N2
= φH(t) +

1√
N2

ξH
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Analytical approach

nT

N2
= φT (t) +

1√
N2

ξT

nRT

N1
= φRT

(t) +
1√
N1

ξRT

nH

N2
= φH(t) +

1√
N2

ξH

Deterministic variables Stochastic variables

System–size expansion through van Kampen theory
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Analytical approach

The Mean–Field System

Order
1√
N1

and
1√
N2

d

dτ
φT = − αφT (1 − φRT

) + βφRT
(1 − φT − φH) − (γ + σ)φHφT

− δ1φT + η1(1 − φT − φH)

d

dτ
φRT

= + c [αφT (1 − φRT
) − βφRT

(1 − φT − φH)]

d

dτ
φH = + γφHφT + η2(1 − φT − φH) − δ2φH

where c =
N2

N1
and τ =

t

N2
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Analytical approach

Simulations
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Analytical approach

The next–to–leading order

Fokker Planck equation (FPE)

∂Π

∂τ
= −

∑

i

∂

∂ξi

(

A(ξ)Π
)

+
1

2

∑

ij

Bij

∂2Π

∂ξi∂ξj

P(n, t) → Π(ξ, τ)
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∂Π

∂τ
= −

∑

i

∂

∂ξi

(

A(ξ)Π
)

+
1

2

∑

ij

Bij

∂2Π

∂ξi∂ξj

P(n, t) → Π(ξ, τ)

The FPE is equivalent to a set of Langevin equations:

dξi

dτ
= Ai(ξ) + ηi (τ)

where 〈ηi (τ)ηj (τ
′)〉 = Bijδ(τ − τ ′)
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Analytical approach

Power Spectrum

Pi (ω) =
∑

j

∑

k

Φ−1
ij (ω)Bjk(Φ†

ij)
−1(ω)
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Conclusions

Conclusions

Oscillations in pain perception and in correlated markers are found in
patients under a pharmacological treatment

A stochastic model is introduced to shed light onto the molecular
mechanisms responsible for the observed behavior

Results of simulations (supported by analytical investigation) suggest
that the intrinsic stochastic noise could play a crucial role

The mechanism here described is rather general and can be possibly
applied to other contexts where ligand–receptor interactions do occur

Di Patti and Fanelli (University of Florence) Pain cycles June 2008 21 / 21



Conclusions

Conclusions

Oscillations in pain perception and in correlated markers are found in
patients under a pharmacological treatment

A stochastic model is introduced to shed light onto the molecular
mechanisms responsible for the observed behavior

Results of simulations (supported by analytical investigation) suggest
that the intrinsic stochastic noise could play a crucial role

The mechanism here described is rather general and can be possibly
applied to other contexts where ligand–receptor interactions do occur

Di Patti and Fanelli (University of Florence) Pain cycles June 2008 21 / 21



Conclusions

Conclusions

Oscillations in pain perception and in correlated markers are found in
patients under a pharmacological treatment

A stochastic model is introduced to shed light onto the molecular
mechanisms responsible for the observed behavior

Results of simulations (supported by analytical investigation) suggest
that the intrinsic stochastic noise could play a crucial role

The mechanism here described is rather general and can be possibly
applied to other contexts where ligand–receptor interactions do occur

Di Patti and Fanelli (University of Florence) Pain cycles June 2008 21 / 21



Conclusions

Conclusions

Oscillations in pain perception and in correlated markers are found in
patients under a pharmacological treatment

A stochastic model is introduced to shed light onto the molecular
mechanisms responsible for the observed behavior

Results of simulations (supported by analytical investigation) suggest
that the intrinsic stochastic noise could play a crucial role

The mechanism here described is rather general and can be possibly
applied to other contexts where ligand–receptor interactions do occur

Di Patti and Fanelli (University of Florence) Pain cycles June 2008 21 / 21


