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Errors on time series data

Abstract setting

signal x(t), recorded data sn.

In between:
Measurement uncertainty and digitization, noise in transmission
channel, uncertainty of clock, systematic measurement errors.

We like to assume:
sn = x(tn) + ξn, where ξn is i.i.d. (additive measurement noise).

Sometimes very bad approximation!
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Dynamical measurements

Measurement device is a dynamical input-output system:
measurement output y(t), system input x(t):

ẏ(t) = f (y , x)

such that: if x(t) = x0: y(t) → y∞(x0) for t → ∞
(dissipative system, globally attracting fixed point).

If x(t) a true function of time: non autonomous dynamics of y(t).

Problem 1: y(tn) 6= y∞(x(tn)) (no instantaneus relaxation).
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Dynamical measurements: y(t) 6= y∞(x(t))

Instead: the output y(tn) for given x(tn) may depend on the past
x(t), t < tn.

Skew dynamical system (measurement device plus object of
investigation)
Difficulties to define error bars and standards.

Introduces temporal correlations into the measurement errors!
Introduces correlations between signal (its time derivative) and
errors.

Technological solution: relaxation time much shorter than the
sampling interval.
Partial fix: considering the linear effects as low-pass filter
([Badii et al. (1988)]: can increase the dimension.)
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Noise reduction

Removing additive noise

Assume noisy data sn = x(tn) + ξn with some noise.

Goal of noise reduction: estimate ξn and form xn = sn − ξn.
(individually for every n)

Criteria to distinguish between signal and noise

Standard technique: linear filters in the Fourier domain

Example: low-pass filter:
Assume: x(t) is smooth function of time, noise ξ is i.i.d.
Then:
x(tn+k) = x(tn) + k∆tẋ(tn) + O(k2∆t2)
1
2(sn−1 + sn+1) = x(tn) + 1

2 (ξn+1 + ξn−1) + O(∆t2)
Variance of “new” noise 1

2(ξn+1 + ξn−1) is reduced by 1/2.
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Wiener filter

Noise model: moving average (MA) process with known power
spectrum
data model: nontrivial power spectrum (preferably with peaks,
e.g., AR).
Optimal linear filter: Wiener filter:
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power of signal y in frequency bin k.

Unsuccessful if too much overlap between noise power spectrum
and signal power spectrum, non-Gaussian noise.

Other criteria than in the frequency domain?
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Noise reduction exploiting redundancy

If signal satisfies E.N. Lorenz’ concept of analogy:
similar data segments (xk , xk+1, . . .) imply a similar continuation
(justified for deterministic origin, but also for a “strong” grammar,
i.e., for high redundancy in stochastic data, e.g., human language):

Synchronised average over similar time series segments (plus higher
order corrections: [Grassberger et al. 1993]) (non-causal!)

ŝn =
1

||Uǫ(sn)||

∑

k∈Uǫ(sn)

sk

where sn = (sn−m, sn−m+1, . . . , sn, sn+1, . . . , sn+m)
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Example: human articulated voice:
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Redundancy concept useful for image processing or video streams?

Problem 2:
Find other concepts of distinction between signal and noise
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Constructing model equations from data

Concept of deterministic models

Takens time delay embedding with embedding dimension m,
deterministic map:

xn+1 = f (xn, xn−1, . . . , xn−m+1)

Or alternatively: vector valued observations ~x ,

~xn+1 = ~f (~xn)

Standard approach: Ansatz for f , least squares problem for
parameter fitting :

〈(xn+1 − f (xn, . . . , xn−m+1))
2〉 = min
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errors in variables

〈(xn+1 − f (xn, . . . , xn−m+1))
2〉 = min

Noise on xn+1: no problem, maximum likelihood model for
uncorrelated data sample (not true for time series data).

However: if xn+1 is noisy, then also xn, xn−1, . . ..

Problem 3:

errors in independent variables.

formal solution:
total least squares
partial solutions:
shadowing (e.g., multiple
shooting [Bock & Plitt (1984)]),
tractable for chaotic systems?
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Stable models

How to guarantee a stable model?

Linear (ARMA, ARIMA) models: Known criteria for stability,
known algorithms to construct stable models from data
(e.g., [Box & Jenkins (1970)]).

Nonlinear (stochastic) models: no general constraints of model
parameters which guarantee stability
No algorithms known which generate only stable models.

Consequence: maximum likelihood estimates of model parameters
are not guaranteed to yield a stable model.
Problem 4: Ensuring stability of fitted (nonlinear) models or
finding the closest stable model to an unstable fitted model
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Lack of structural stability

Generic dynamical systems are not structurally stable.
I.e., even if solutions remain in a bounded regime (=stability of the
model), their asymptotic behaviour may sensitively depend on
parameters.

Problem 5: robust fitting results for non-hyperbolic systems?
How to ensure that the asymptotics of the model is similar to the
asymptotics of the data?
partial solution (purely deterministic): shadowing.
or: stochstic models (Langevin equations)
[Friedrich & Peinke (1997) ]
[Compare also talks by A. Duggento and A.A. Dubkov (yesterday)]
Non Gaussian noises? Correlated noises?
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time discrete stochastic models

estimate transition probabilities (e.g., by kernel estimators):

p(xn+1|xn, xn−1, . . . , xn−m)

- guaranteed to be stable
- no choice of basis functions: flexible

essential: Implies a Markov approximation

Problem 6: Order of the Markov approximation?
Criteria for truncation of the memory needed.
[Paparella et al. (1997), Kantz et al. (2004)]
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State estimation

identifying a system’s state

Scenario (as in weather forecasting):
Run the dynamical model and simultaneously observe reality.
When model state deviates from real state: update model state
(= data assimilation).

How to estimate the current state of the real world?

Construct a blend of the model state vector and the noisy
observations as the most probable state of reality.

Simple setting: All system variables observed (noisy).
More difficult setting: Incomplete observations (noisy).

Linear system: Kalman filter.
Extended Kalman filter: linearization of a nonlinear system.
other extensions for nonlinear systems are available.
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Data assimilation

Problem 7: Data assimilation remains a widely open field
essential: efficiency of the algorithms
(e.g., numerical weather prediction ECMWF global model: 50% of
all computation time for a 10 day (medium range) weather forecast
just for data assimilation and ensemble breeding).
[http://www.ecmwf.int/products/forecasts/guide/user guide.pdf]

Nonlinear system: invariant density (invariant measure) is (close
to) singular, true state vectors located on “attractor”.
Unstable directions due to chaos.



Assessing and reducing uncertainty of data Model equations from data Forecasting and uncertainty of the “initial condition”

Ensemble breeding

Ensembles of initial conditions

Nonlinear systems with uncertain initial conditions:
Create an ensemble of “plausible” initial conditions,
run the dynamics on all of them to explore the variablity of the
future.

Problem 8: Construct plausible ensembles
a) ensemble should respect the error covariance statistics
b) ensemble members should be on the attractor
c) few ensemble members should explore a high dimensional phase
space

established solutions: bred vectors, Lyapunov vectors,
more recent: covariant Lyapunov vectors gurantee b), help for c),
but numerically expensive.
[Ginelli et al. (2007), Lopez, Guiterez (2007)].
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propagating PDFs

The ensemble represents a probability density function (PDF) for
the unknown state of reality.

Problem 9: Estimate propagated PDFs from propagated ensembles.
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Failure of predictions

wrong prediction:
- perfect initial conditions, bad model (data driven or first
principles)
- perfect model, bad initial conditions

Problem 10:
identify model errors despite errors in initial conditions
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Conclusions

Problems in state estimation and model construction

1 Dynamical measurement errors depend on the signal

2 criteria for the distinction of signal and noise

3 Fitting model parameters: errors in independent variables

4 Selecting model classes which are stable

5 Guaranteeing correct asymptotic model dynamics despite lack
of structural stability

6 Markov order of discrete time stochastic models

7 fast algorithms for data assimilation: blending model state
with measurements

8 construct ensembles of initial conditions

9 derive time evolution of pdfs from time evolution of ensembles

10 model errors versus errors in initial conditions
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