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Crackling Noise

Many slowly driven interacting systems (Barkhausen noise,
plastic deformation...) exhibit “crackling noise” - an
intermittent global activity signal V (t):
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Avalanche sizes s =
∫ T

0 V (t)dt (and durations T etc.)
follow power law distributions, P(s) = s−τs fc(s/s0).
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Crackling Noise - Temporal Correlations

Short times - structure of individual avalanches:
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Longer times - correlations between different events:

P. A. Houle and J. P. Sethna, PRE 54, 278 (1996).
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Crackling Noise - Short Time Correlations

A simple relation between avalanche (〈s(T )〉 ∼ T γst ) and
power spectrum scaling (originally for Barkhausen noise):

S(f ) ∼ f−γst . (1)

Appears to be valid for a number of systems.
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Crackling Noise - Long Time Correlations

Temporal event clustering observed in a number of
systems:

Earthquakes - mainshocks followed by a sequence of
aftershocks obeying Omori’s law.
Acoustic emission events in plastic deformation and
fracture of various materials.

Temporal clustering usually connected to spatial clustering:

J. Weiss and D. Marsan, Science 299, 89 (2003).
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Crackling Noise - Long Time Correlations

To study correlations between different avalanches, one
should first define an avalanche.
This is not always easy:

Acoustic emission and front velocity from peeling of plexiglass plates.
From S. Santucci (Oslo).
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Crackling Noise - The Effect of Thresholding

In a typical experiment, a finite detection threshold is used
(due to noise etc.).
Thus, avalanches can be broken into apparently distinct
“subavalanches”:
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The Random Walk Model

Model the V (t)-signal of a single avalanche with an
excursion of a random walk from the origin.
Insert exponentially distributed waiting times τ between
such “avalanches”.
Study the effect of a finite threshold level Vth on the
observed waiting time (or quiet time) statistics, with or
without additive white noise:
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The Random Walk Model - Without Noise

The durations T of such excursions are power law
distributed,

P(T ) ∼ T−3/2. (2)

Due to the Markovian nature of the process, the same
applies also to the thresholded durations.
Translation invariance implies that the “internal” waiting
(quiet) times τ have the same distribution, P(τ) ∼ τ−3/2,
with a cut-off due to a finite Vth:
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The Random Walk Model - With Noise

An experimentalist chooses the threshold level to be just
above the noise level to keep maximum amount of
information.
To model this, add Gaussian white noise with standard
deviation σ and use threshold Vth = 4σ:
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The exponent appears to change, τw ≈ 2.0.
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The Manna Sandpile Model

To see if such ideas can be extended to more realistic
avalanche signals, we consider the Manna sandpile model
of self-organized criticality.
A 2d square lattice with an integer zi assigned to each site.
If zi ≥ zc = 2, a toppling occurs: zi → zi − 2 and two
randomly chosen nearest neighbours receive a “grain”.
Parallel dynamics, grains can leave the system through the
open boundaries, slow drive.
Take V (t) to be the number of topplings as a function of
time (time unit ∼ one parallel update of the lattice).
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The Manna Sandpile Model - Waiting Times

The avalanche statistics can be characterized by power
law distributions, with the avalanche durations obeying

P(T ) ∼ T−τT , (3)

with τT ≈ 1.51.
Upon thresholding, the observed waiting times become
power-law distributed, P(τ) ∼ τ−τw , with τw ≈ 1.65:
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The Manna Sandpile Model - Avalanche Durations

The duration distribution exponent evolves from τT ≈ 1.5 to
τT ≈ 1.65 as Vth is increased:
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Similar observations have been made in the deterministic
BTW model [M. Paczuski, S. Boettcher, and M. Baiesi,
PRL 95, 181102 (2005)].
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Conclusions

The high frequency power spectra of a wide class of
avalanching systems can be understood (S(f ) ∼ f−γst ).
Understanding longer time correlations - clustering of
avalanches - is more difficult.
A finite detection threshold could explain the observations
in some cases, such as for solar flares.
A simple random walk model illustrates how power law
distributed waiting times between avalanches can arise
from thresholding - the effect of noise remains to be
explained (τw ≈ 2.0?).
A similar symmetry between waiting times and avalanche
durations is observed in the Manna model for high
thresholds - the duration exponent changes from the
non-thresholded case.
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