Temporal avalanche correlations in crackling noise

Lasse Laurson, Xavier Illa, and Mikko Alava

Laboratory of Physics, Helsinki University of Technology

Unsolved Problems on Noise 2008

Crackling Noise

 Many slowly driven interacting systems (Barkhausen noise, plastic deformation...) exhibit "crackling noise" - an intermittent global activity signal V(t):

• Avalanche sizes $s = \int_0^T V(t) dt$ (and durations T etc.) follow power law distributions, $P(s) = s^{-\tau_s} f_c(s/s_0)$.

Crackling Noise - Temporal Correlations

Short times - structure of individual avalanches:

Longer times - correlations between different events:

P. A. Houle and J. P. Sethna, PRE **54**, 278 (1996).

Crackling Noise - Short Time Correlations

• A simple relation between avalanche ($\langle s(T) \rangle \sim T^{\gamma_{st}}$) and power spectrum scaling (originally for Barkhausen noise):

$$S(f) \sim f^{-\gamma_{st}}.$$
 (1)

Appears to be valid for a number of systems.

Crackling Noise - Long Time Correlations

- Temporal event clustering observed in a number of systems:
 - Earthquakes mainshocks followed by a sequence of aftershocks obeying Omori's law.
 - Acoustic emission events in plastic deformation and fracture of various materials.
- Temporal clustering usually connected to spatial clustering:

J. Weiss and D. Marsan, Science **299**, 89 (2003).

Crackling Noise - Long Time Correlations

- To study correlations between different avalanches, one should first define an avalanche.
- This is not always easy:

Acoustic emission and front velocity from peeling of plexiglass plates. From S. Santucci (Oslo).

Crackling Noise - The Effect of Thresholding

- In a typical experiment, a finite detection threshold is used (due to noise etc.).
- Thus, avalanches can be broken into apparently distinct "subavalanches":

The Random Walk Model

- Model the V(t)-signal of a single avalanche with an excursion of a random walk from the origin.
- Insert exponentially distributed waiting times τ between such "avalanches".
- Study the effect of a finite threshold level V_{th} on the observed waiting time (or quiet time) statistics, with or without additive white noise:

The Random Walk Model - Without Noise

 The durations T of such excursions are power law distributed,

$$P(T) \sim T^{-3/2}. (2)$$

- Due to the Markovian nature of the process, the same applies also to the thresholded durations.
- Translation invariance implies that the "internal" waiting (quiet) times τ have the same distribution, $P(\tau) \sim \tau^{-3/2}$, with a cut-off due to a finite V_{th} :

The Random Walk Model - With Noise

- An experimentalist chooses the threshold level to be just above the noise level to keep maximum amount of information.
- To model this, add Gaussian white noise with standard deviation σ and use threshold $V_{th} = 4\sigma$:

• The exponent appears to change, $au_{\it w} pprox$ 2.0.

The Manna Sandpile Model

- To see if such ideas can be extended to more realistic avalanche signals, we consider the Manna sandpile model of self-organized criticality.
- A 2d square lattice with an integer z_i assigned to each site.
- If $z_i \ge z_c = 2$, a toppling occurs: $z_i \to z_i 2$ and two randomly chosen nearest neighbours receive a "grain".
- Parallel dynamics, grains can leave the system through the open boundaries, slow drive.
- Take V(t) to be the number of topplings as a function of time (time unit ~ one parallel update of the lattice).

The Manna Sandpile Model - Waiting Times

 The avalanche statistics can be characterized by power law distributions, with the avalanche durations obeying

$$P(T) \sim T^{-\tau_T},$$
 (3)

with $\tau_T \approx 1.51$.

• Upon thresholding, the observed waiting times become power-law distributed, $P(\tau) \sim \tau^{-\tau_W}$, with $\tau_W \approx 1.65$:

The Manna Sandpile Model - Avalanche Durations

• The duration distribution exponent evolves from $\tau_T \approx 1.5$ to $\tau_T \approx 1.65$ as V_{th} is increased:

 Similar observations have been made in the deterministic BTW model [M. Paczuski, S. Boettcher, and M. Baiesi, PRL 95, 181102 (2005)].

Conclusions

- The high frequency power spectra of a wide class of avalanching systems can be understood ($S(f) \sim f^{-\gamma_{st}}$).
- Understanding longer time correlations clustering of avalanches - is more difficult.
- A finite detection threshold could explain the observations in some cases, such as for solar flares.
- A simple random walk model illustrates how power law distributed waiting times between avalanches can arise from thresholding the effect of noise remains to be explained ($\tau_W \approx 2.0$?).
- A similar symmetry between waiting times and avalanche durations is observed in the Manna model for high thresholds - the duration exponent changes from the non-thresholded case.