Problems of noise modeling in the presence of total current branching in HEMTs and FETs channels

P. Shiktorov, E. Starikov, V. Gruzhinskis Semiconductor Physics Institute, Vilnius, Lithuania

L.Varani, G. Sabatini, H. Marinchio Institute of Electronics of the South, Univ. Montpellier 2, France

L. Reggiani Dept. Innovation Engineering, Univ. Salento, Lecce, Italy

Outline

- Current branching
- Circuit model
- Analytical model
- Results
- Open problems

Conservation of total current

• Maxwell eqs. \rightarrow conservation of total current \rightarrow Kirchhoff law

$$\oint_{S} \mathbf{j}_{tot} d\mathbf{S} = 0$$

$$\mathbf{j}_{tot} = \varepsilon_{\varepsilon_{0}} \frac{\partial \mathbf{E}}{\partial t} + \mathbf{j}_{d}$$

$$\mathbf{j}_{tot} = \varepsilon_{\varepsilon_{0}} \frac{\partial \mathbf{E}}{\partial t} + \mathbf{j}_{d}$$

$$\mathbf{j}_{tot} = \mathbf{j}_{tot}$$

No branching \rightarrow 2 terminals \rightarrow Diode

 $\frac{\partial [S(x)j_{tot}(x,t)]}{\partial x} = 0$

No branching \rightarrow 2 terminals \rightarrow Diode

 $\frac{\partial [S(x)j_{tot}(x,t)]}{\partial x} = 0$

No branching \rightarrow 2 terminals \rightarrow Diode

1st consequence: Ramo-Shockley theorem

$$I_{tot} = \frac{e}{L} \sum_{i=1}^{N} v_i - \epsilon \epsilon_0 \frac{\partial}{\partial t} \Delta U$$

 ΔU

1st consequence: Ramo-Shockley theorem

$$I_{tot} = \frac{e}{L} \sum_{i=1}^{N} v_i - \frac{\epsilon \epsilon_0}{\partial t} \frac{\partial}{\partial t} \Delta U$$

displacement

 ΔU

1st consequence: Ramo-Shockley theorem

$$I_{tot} = \frac{e}{L} \sum_{i=1}^{N} v_i - \epsilon \epsilon_0 \frac{\partial}{\partial t} \Delta U$$

 $\frac{\text{drift}}{\Delta U}$

2nd consequence: Thevenin-Norton theorem

 $\overline{v^2} = 4KTR\Delta f$

 $\overline{i^2} = 4KTG\Delta f$

- Total current conservation = zero-sum rule (Kirchhoff)
- Typical of field-effect transistors
- Channel = total current branching between source-drain and channel-gate directions

Aim of the study

Discuss problems related to the intrinsic noise in FET channels induced by the continuous branching of the total current between 3 terminals

 $J_c(n) - J_c(n-1) + J_g(n) = 0$

Circuit model: impedance network

Circuit model: impedance network

Circuit model: impedance network

Source

Drain

$$J_i^{disp}(n) = -C_i(n) \frac{d}{dt} \begin{cases} \left[\varphi(n+1) - \varphi(n)\right] &, i=0\\ \left[U_G - \tilde{\varphi}(n)\right] &, i=0 \end{cases}$$

$$\left[C_c(n)\frac{d}{dt}[\varphi(n+1)-\varphi(n)]+J_c^d(k)\right]-$$

$$\left[C_c(n-1)\frac{d}{dt}[\varphi(n)-\varphi(n-1)]+J_c^d(n-1)\right]=$$

$$-\left[C_g(n)\frac{d}{dt}[U_G - \tilde{\varphi}(n)] + J_g^d(n)\right]$$

$$\left[C_c(n)\frac{d}{dt}[\varphi(n+1)-\varphi(n)]+J_c^d(k)\right]-$$

$$\left[C_c(n-1)\frac{d}{dt}[\varphi(n)-\varphi(n-1)]+J_c^d(n-1)\right] = \ln \frac{d}{dt}\left[\varphi(n)-\varphi(n-1)\right] + \frac{d}{dt}\left[\varphi(n-1)-\varphi(n-1)\right] + \frac{d}{dt}\left[\varphi(n-1)-\varphi(n-1)-\varphi(n-1)\right] + \frac{d}{dt}\left[\varphi(n-1)-\varphi(n-1)\right] + \frac{d}{dt}\left[$$

$$-\left[C_g(n)\frac{d}{dt}[U_G - \tilde{\varphi}(n)] + J_g^d(n)\right]$$

$$\left[C_c(n)\frac{d}{dt}[\varphi(n+1)-\varphi(n)]+J_c^d(k)\right] - \text{Out source} \rightarrow \text{drain}$$

$$\left[C_c(n-1)\frac{d}{dt}[\varphi(n)-\varphi(n-1)]+J_c^d(n-1)\right] = \ln \frac{d}{dt}\left[\varphi(n)-\varphi(n-1)\right] + \frac{d}{dt}\left[\varphi(n-1)-\varphi(n-1)\right] + \frac{d}{dt}\left[\varphi(n-1)-\varphi(n-1)-\varphi(n-1)\right] + \frac{d}{dt}\left[\varphi(n-1)-\varphi(n-1)\right] + \frac{d}{dt}\left[$$

$$-\left[C_g(n)\frac{d}{dt}[U_G - \tilde{\varphi}(n)] + J_g^d(n)\right]$$

$$\left[C_c(n)\frac{d}{dt}[\varphi(n+1)-\varphi(n)]+J_c^d(k)\right] - \text{Out source} \rightarrow \text{drain}$$

$$\left[C_c(n-1)\frac{d}{dt}[\varphi(n)-\varphi(n-1)]+J_c^d(n-1)\right] = \ln \frac{d}{dt}\left[\varphi(n)-\varphi(n-1)\right] + \frac{d}{dt}\left[\varphi(n-1)-\varphi(n-1)\right] + \frac{d}{dt}\left[\varphi(n-1)-\varphi(n-$$

$$-\left[C_g(n)\frac{d}{dt}[U_G - \tilde{\varphi}(n)] + J_g^d(n)\right]$$

Out channel
$$\rightarrow$$
 gate

$$\left[C_c(n)\frac{d}{dt}[\varphi(n+1)-\varphi(n)]+J_c^d(k)\right] - \text{Out source} \rightarrow \text{drain}$$

$$\left[C_c(n-1)\frac{d}{dt}[\varphi(n)-\varphi(n-1)]+J_c^d(n-1)\right] = \Box$$

$$-\left[C_g(n)\frac{d}{dt}[U_G - \tilde{\varphi}(n)] + J_g^d(n)\right]$$

Out channel \rightarrow gate

by taking the limit $\Delta x \to 0$ and normalizing to the cross-section $S = W\delta$...

Conservation of total current in differential form

Total

 $\frac{d}{dx}[j_c(x)] + \frac{1}{\delta}j_g(x) = 0$

Conservation of total current in differential form

Total

 $\frac{d}{dx}[j_c(x)] + \frac{1}{\delta}j_g(x) = 0$

Channel

$$j_{c}(x) = -\epsilon_{c}\epsilon_{0}\frac{d}{dt}\frac{\partial}{\partial x}\varphi(x) + j_{c}^{d}(x)$$

Conservation of total current in differential form

Total

$$\frac{d}{dx}[j_c(x)] + \frac{1}{\delta}j_g(x) = 0$$

Channel
$$j_c(x) = -\epsilon_c \epsilon_0 \frac{d}{dt} \frac{\partial}{\partial x} \varphi(x) + j_c^d(x)$$

Gate

$$j_g(x) = -\frac{\epsilon_d \epsilon_0}{d(x)} \frac{d}{dt} [U_G - \varphi(x)] + j_g^d(x)$$

Conservation of total current in integral form By integrating between source (x=0) and drain (x=L)

Quasi-2D Poisson equation

By using the charge conservation law

 $\frac{\partial}{\partial t}\rho^{3D}(x) + \frac{\partial}{\partial x}j_c^d(x) + \frac{j_g^a(x)}{\delta} = 0$

 $\epsilon_c \frac{\partial^2}{\partial x^2} \varphi(x) + \frac{\epsilon_d}{d(x)\delta} [U_g - \varphi(x)] = -\frac{1}{\epsilon_0} \rho^{3D}(x)$

Quasi-2D Poisson equation

By using the charge conservation law

 $\frac{\partial}{\partial t}\rho^{3D}(x) + \frac{\partial}{\partial x}j_c^d(x) + \frac{j_g^d(x)}{\delta} = 0$

Longitudinal field

$$\frac{\partial^2}{\partial x^2}\varphi(x) + \frac{\epsilon_d}{d(x)\delta}[U_g - \varphi(x)] = -\frac{1}{\epsilon_0}\rho^{3D}(x)$$

Quasi-2D Poisson equation

By using the charge conservation law

 $\frac{\partial}{\partial t}\rho^{3D}(x) + \frac{\partial}{\partial x}j_c^d(x) + \frac{j_g^d(x)}{\delta} = 0$

Longitudinal field Gate field

$$\epsilon_c \frac{\partial^2}{\partial x^2} \varphi(x) + \frac{\epsilon_d}{d(x)\delta} [U_g - \varphi(x)] = -\frac{1}{\epsilon_0} \rho^{3D}(x)$$

Ist limit of quasi-2D Poisson equation

Narrow channel $\delta \rightarrow 0$

$\delta \epsilon_0 \epsilon_c \frac{\partial^2}{\partial x^2} [\varphi(x)] + \frac{\epsilon_0 \epsilon_d}{d(x)} [U_g - \varphi(x)] = -\rho^{3D}(x) \delta$

$\delta \epsilon_0 \epsilon_c \frac{\partial^2}{\partial x^2} [\varphi(x)] + \frac{\epsilon_0 \epsilon_d}{d(x)} [U_g - \varphi(x)] = -\rho^{3D}(x) \delta$
Ist limit of quasi-2D Poisson equation *Gate* Narrow channel $\delta \rightarrow 0$ *Source*

$$\delta \epsilon_0 \epsilon_c \frac{\partial^2}{\partial x^2} [\varphi(x)] + \frac{\epsilon_0 \epsilon_d}{d(x)} [U_g - \varphi(x)] = -\rho^{3D}(x)\delta$$

$$C_g V_0 = -eN^{2D}(x)$$

Gradual channel approximation

2nd limit of quasi-2D Poisson equation $\int_{d} \int_{d} \int_{d$

$$\frac{\partial^2}{\partial x^2}\varphi(x) + \frac{\epsilon_d}{\epsilon_c d(x)\delta} [U_g - \varphi(x)] = -\frac{1}{\epsilon_0\epsilon_c} \rho^{3D}(x)$$

2nd limit of quasi-2D Poisson equation

$$\int_{d} \int_{d} \int_{d}$$

ID Poisson equation

- No transport to gate $\rightarrow j_g^d(x) = 0$
- Drift current in the channel $\rightarrow j_c^d(x) = en^{3D}(x)v(x)$

Velocity from hydrodynamic approach

- No transport to gate $\rightarrow j_g^d(x) = 0$
- Drift current in the channel $\rightarrow j_c^d(x) = en^{3D}(x)v(x)$

Velocity from hydrodynamic approach

$$\frac{\partial}{\partial t}v + \frac{\partial}{\partial x}\left[\frac{v^2}{2} + \frac{e}{m}\varphi(x)\right] + e\nu D\frac{\partial}{\partial x}n^{3D}(x) = -\nu v + \tilde{f}$$

- No transport to gate $\rightarrow j_g^d(x) = 0$
- Drift current in the channel $\rightarrow j_c^d(x) = en^{3D}(x)v(x)$

Velocity from hydrodynamic approach

$$\begin{split} \frac{\partial}{\partial t}v + \frac{\partial}{\partial x}\left[\frac{v^2}{2} + \frac{e}{m}\varphi(x)\right] + e\nu D\frac{\partial}{\partial x}n^{3D}(x) = -\nu v + \tilde{f} \\ & \text{Velocity} \\ & \text{relaxation rate} \end{split}$$

- No transport to gate $\rightarrow j_g^d(x) = 0$
- Drift current in the channel $\rightarrow j_c^d(x) = en^{3D}(x)v(x)$

• Velocity from hydrodynamic approach Diffusion coefficient

$$\begin{split} \frac{\partial}{\partial t}v + \frac{\partial}{\partial x} \left[\frac{v^2}{2} + \frac{e}{m}\varphi(x) \right] + e\nu D \frac{\partial}{\partial x} n^{3D}(x) = -\nu v + \tilde{f} \\ & \text{Velocity} \\ & \text{relaxation rate} \end{split}$$

- No transport to gate $\rightarrow j_g^d(x) = 0$
- Drift current in the channel $\rightarrow j_c^d(x) = en^{3D}(x)v(x)$

• Velocity from hydrodynamic approach Diffusion coefficient

$$\frac{\partial}{\partial t}v + \frac{\partial}{\partial x} \left[\frac{v^2}{2} + \frac{e}{m}\varphi(x) \right] + e \frac{\partial}{\partial x} \frac{\partial}{\partial x} n^{3D}(x) = -\frac{\partial}{\partial x}v + \frac{f}{f}$$
Velocity
Langevin
relaxation rate
force

Analytical Model

- Carrier concentration in the channel n_0
- No drift velocity $v_0 = 0$
- Linearization of equations
- Neglecting diffusion current

Linearized equations in frequency domain

• Potential
$$\frac{d^2}{dx^2}\Delta\varphi(x) + \lambda^2[\Delta U_g - \Delta\varphi] = -\frac{e}{\epsilon\epsilon_0}\Delta n$$

• Concentration
$$e\Delta n = -\frac{1}{i\omega}\frac{d}{dx}\Delta j_d$$

• Drift current
$$\Delta j_d(x) = en_0 \Delta v = \epsilon \epsilon_0 \frac{\omega_p^2}{i\omega + \nu} \left[\tilde{f} - \frac{\partial}{\partial x} \Delta \varphi \right]$$

Self-consistent fluctuating potential

$$\frac{d^2}{dx^2}\varphi - \beta^2\varphi = -\beta^2\Delta U_g + \frac{d}{dx}\tilde{f}$$

where
$$\beta^2 = \lambda^2 [i\omega(i\omega + \nu)/(\omega_p^2 + i\omega(i\omega + \nu))]$$

Solved using Green functions

$$G(x, x_0) = \frac{1}{\beta} \left[-\frac{sh\beta(L - x_0)}{sh\beta L} sh\beta x_0 + Z(x - x_0)sh\beta(x - x_0) \right]$$

Solution in common source configuration

$$\Delta \mathbf{J} = \begin{bmatrix} \Delta J_d \\ \Delta J_g \end{bmatrix}, \quad \Delta \mathbf{U} = \begin{bmatrix} \Delta U_d \\ \Delta U_g \end{bmatrix} \qquad \Delta \mathbf{J} = \hat{Y} \Delta \mathbf{U} + \xi_J$$

Admittance

$$\hat{Y} = \epsilon \epsilon_0 \frac{\omega_p^2 + i\omega(i\omega + \nu)}{i\omega + \nu} \frac{\beta sh\beta \frac{L}{2}}{ch\beta \frac{L}{2}} \begin{pmatrix} -\frac{ch\beta L}{ch\beta L - 1} & 1\\ 1 & -2 \end{pmatrix}$$

Norton generator of current noise

 $\xi_J = \epsilon \epsilon_0 \frac{\omega_p^2 \beta}{i\omega + \nu} \int_0^L \left[\frac{ch\beta x_0/sh\beta L}{sh\beta(\frac{L}{2} - x_0)/ch\beta\frac{L}{2}} \right] \tilde{f}(x_0) dx_0$

 $\begin{cases} L = 1000 \text{ nm} \\ \delta = 15 \text{ nm} \\ d = 15 \text{ nm} \\ N_D^{3D} = 8 \times 10^{17} \text{ cm}^{-3} \\ 30 + 30 \text{ nm ungated} \\ \nu = 3 \times 10^{12} \text{ s}^{-1} \\ m^* = 0.048m_0 \end{cases}$

 $\begin{cases} L = 1000 \text{ nm} \\ \delta = 15 \text{ nm} \\ d = 15 \text{ nm} \\ N_D^{3D} = 8 \times 10^{17} \text{ cm}^{-3} \\ 30 + 30 \text{ nm ungated} \\ \nu = 3 \times 10^{12} \text{ s}^{-1} \\ m^* = 0.048m_0 \end{cases}$

$$S_{\xi\xi}(\omega) = \int_0^L n^{3D} |G_{\xi}(\omega, x_0)|^2 S_{ff} dx_0$$

 $\left\{ egin{array}{ll} L = 1000 \ {
m nm} \ \delta = 15 \ {
m nm} \ d = 15 \ {
m nm} \ N_D^{3D} = 8 imes 10^{17} \ {
m cm}^{-3} \ 30 + 30 \ {
m nm} \ {
m ungated} \
u = 3 imes 10^{12} \ {
m s}^{-1} \ m^* = 0.048 m_0 \end{array}
ight.$

$$S_{\xi\xi}(\omega) = \int_0^L n^{3D} \frac{|G_{\xi}(\omega, x_0)|^2}{|G_{\xi}(\omega, x_0)|^2} S_{ff} dx_0$$

Transfer
field

 $\begin{cases} L = 1000 \text{ nm} \\ \delta = 15 \text{ nm} \\ d = 15 \text{ nm} \\ N_D^{3D} = 8 \times 10^{17} \text{ cm}^{-3} \\ 30 + 30 \text{ nm ungated} \\ \nu = 3 \times 10^{12} \text{ s}^{-1} \\ m^* = 0.048m_0 \end{cases}$

$$S_{\xi\xi}(\omega) = \int_0^L n^{3D} |G_{\xi}(\omega, x_0)|^2 S_{ff} dx_0$$

TransferSpectral density offieldLangevin force $= 4k_B T \nu / m^*$

Effect of time delay

Spectra of current fluctuations

- Resonances in the THz domain
- Ungated regions suppresses HF peaks
- Different resonances at source and gate

Unsolved problem #1

Is it possible to measure electronic noise at TeraHertz frequencies?

Challenge for experiments

Plasma waves in semiconductors

Travelling plasma waves

Travelling plasma waves Gate

Plasma modes in field-effect transistors

$$\omega_{res}^{i}(n) = \omega_{p}^{3D} \frac{n}{\sqrt{(\lambda L/\pi)^{2} + n^{2}}} \begin{cases} n = 0, 1, 2, \dots, i = d \\ n = 1, 3, 5, \dots, i = g \end{cases}$$

3D plasma frequency geometry factor $\lambda = \sqrt{\epsilon_d/\epsilon_c d\delta}$

Unsolved problem #2

Is it possible to exploit plasma waves to obtain a detector or emitter of TeraHertz radiation?

Huge number of potential applications

From ungated to gated transistor

From ungated to gated transistor

Unsolved problem #3

Which is the physical origin of the excess noise?

The system is at equilibrium and total noise power increases (not simple noise redistribution)

Noise vs operation mode

closed

Unsolved problem #4

Which is the intrinsic noise of the transistor?

Noise spectra depend on operating conditions Failure of Thevenin/Norton equivalence?

Conclusions

- Novel circuit + analytical model
- Thermal fluctuations excite standing plasma waves at THz frequencies
- Current branching strongly influences intrinsic noise spectra

unsolved problem on branching

