Does the eye tremor provide the hyperacuity phenomenon?

S. Zozor, P.-O. Amblard & C. Duchêne

GIPSA-lab, Images and Signal Department, Grenoble, France

UPoN'08 - 6 June 2008

FLUCTUATIONS IN THE RETINA

Retina = map of sensors subjected to noise :

- Neuronal noise
- Random sampling by the photoreceptors
- Random distribution of rods and cones
- Saccadic movement of the eye (tremor)

FLUCTUATIONS IN THE RETINA

Retina = map of sensors subjected to noise :

- Neuronal noise
- Random sampling by the photoreceptors
- Random distribution of rods and cones.
- Saccadic movement of the eye (tremor)

Aim:

investigation of this fluctuations on the visual process, through noise-enhanced processing point of view (e.g. Hyperacuity)

Henning et al. Neurocomputing 2004

Hongler et al. $IEEE\ PAMI\ 2003$

Landolt & Mitros Autonomous Robots 2001

Acquisition:
$$S_r(\boldsymbol{x}_n, t) = \int S(\boldsymbol{x}_n + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

part of the fovea

raudom sampling

Kolb et al.

webvision.edu.utah.edu

Acquisition:
$$S_r(\boldsymbol{x}_n,t) = \int S(\boldsymbol{x}_n + \gamma \boldsymbol{\epsilon}_n + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

Acquisition:
$$S_r(\boldsymbol{x}_n,t) = \int S(\boldsymbol{x}_n + \gamma \boldsymbol{\epsilon}_n + \sigma \boldsymbol{\xi}_t + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

webvision.edu.utah.edu

Martinez-conde et al., 2004

Acquisition:
$$S_r(\boldsymbol{x}_n, t) = \int S(\boldsymbol{x}_n + \gamma \boldsymbol{\epsilon}_n + \sigma \boldsymbol{\xi}_t + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

Acquisition:
$$S_r(\boldsymbol{x}_n,t) = \int S(\boldsymbol{x}_n + \gamma \boldsymbol{\epsilon}_n + \sigma \boldsymbol{\xi}_t + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

Acquisition:
$$S_r(\boldsymbol{x}_n,t) = \int S(\boldsymbol{x}_n + \gamma \boldsymbol{\epsilon}_n + \sigma \boldsymbol{\xi}_t + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

Acquisition:
$$S_r(\boldsymbol{x}_n,t) = \int S(\boldsymbol{x}_n + \gamma \boldsymbol{\epsilon}_n + \sigma \boldsymbol{\xi}_t + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

webvision.edu.utah.edu

Martinez-conde et al., 2004

Acquisition:
$$S_r(\boldsymbol{x}_n, t) = \int S(\boldsymbol{x}_n + \gamma \boldsymbol{\epsilon}_n + \sigma \boldsymbol{\xi}_t + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

ASSUMPTIONS

$$S_r(\boldsymbol{x}_n, t) = \int S(\boldsymbol{x}_n + \gamma \boldsymbol{\epsilon}_n + \sigma \boldsymbol{\xi}_t + \boldsymbol{u}) a(\boldsymbol{u}) d\boldsymbol{u}$$

- Dimension $d \ge 1$
- S isotropic and homogeneous, $\Gamma_S(\mathbf{f}) \sim 1/\|\mathbf{f}\|^{2-\eta}$ (natural scene) $\Gamma_S(\mathbf{f}) = \beta^{-d}\Gamma_0(\|\mathbf{f}\|/\beta)$, "bandwidth" β

$$\Gamma_0(f) \propto \left\{ egin{array}{ll} \dfrac{1}{(1+4\pi^2f^2)^{1-\eta/2}} & ext{Short Range Correlation} \\ (2\pi f)^{rac{d+\eta-2}{2}} K_{1-rac{\eta}{2}}(2\pi f) & ext{Long Range Correlation} \end{array}
ight.$$

- $\gamma \epsilon_n$ and $\sigma \xi_t$: independent isotropic, of magnitude γ and σ
- receptive field a(.) isotropic, "width" α : $a(\mathbf{u}) = \alpha^{-d} a_0 (\|\mathbf{u}\|/\alpha)$

Information acquired by the sensors, from scene S:

Shannon mutual information (rate) $I(S, S_r) \leadsto$ untractable calculus;

$$C(\boldsymbol{y}) = \frac{E[S_r(\boldsymbol{x}_n, t)S(\boldsymbol{x}_n + \boldsymbol{y})]}{(E[S_r(\boldsymbol{x}_n, t)^2]E[S(\boldsymbol{x}_n + \boldsymbol{y})^2])^{\frac{1}{2}}}$$

Information acquired by the sensors, from scene S:

Shannon mutual information (rate) $I(S, S_r) \leadsto$ untractable calculus;

$$C(\boldsymbol{y}) = \frac{E[S_r(\boldsymbol{x}_n, t)S(\boldsymbol{x}_n + \boldsymbol{y})]}{(E[S_r(\boldsymbol{x}_n, t)^2]E[S(\boldsymbol{x}_n + \boldsymbol{y})^2])^{\frac{1}{2}}}$$

Information acquired by the sensors, from scene S:

Shannon mutual information (rate) $I(S, S_r) \leadsto \text{untractable calculus};$

$$C(\boldsymbol{y}) = \frac{E[S_r(\boldsymbol{x}_n, t)S(\boldsymbol{x}_n + \boldsymbol{y})]}{(E[S_r(\boldsymbol{x}_n, t)^2]E[S(\boldsymbol{x}_n + \boldsymbol{y})^2])^{\frac{1}{2}}}$$

Information acquired by the sensors, from scene S:

Shannon mutual information (rate) $I(S, S_r) \leadsto$ untractable calculus;

$$C(\boldsymbol{y}) = \frac{E[S_r(\boldsymbol{x}_n, t)S(\boldsymbol{x}_n + \boldsymbol{y})]}{(E[S_r(\boldsymbol{x}_n, t)^2]E[S(\boldsymbol{x}_n + \boldsymbol{y})^2])^{\frac{1}{2}}}$$

Information acquired by the sensors, from scene S:

Shannon mutual information (rate) $I(S, S_r) \leadsto \text{untractable calculus};$

$$C(\boldsymbol{y}) = \frac{E[S_r(\boldsymbol{x}_n, t)S(\boldsymbol{x}_n + \boldsymbol{y})]}{(E[S_r(\boldsymbol{x}_n, t)^2]E[S(\boldsymbol{x}_n + \boldsymbol{y})^2])^{\frac{1}{2}}}$$

Information acquired by the sensors, from scene S:

Shannon mutual information (rate) $I(S, S_r) \leadsto$ untractable calculus;

$$C(\boldsymbol{y}) = \frac{E[S_r(\boldsymbol{x}_n, t)S(\boldsymbol{x}_n + \boldsymbol{y})]}{(E[S_r(\boldsymbol{x}_n, t)^2]E[S(\boldsymbol{x}_n + \boldsymbol{y})^2])^{\frac{1}{2}}}$$

General expression:

$$C(\boldsymbol{y}) \propto \int R_S(\boldsymbol{y} - \gamma \boldsymbol{\epsilon} - \boldsymbol{\sigma} \boldsymbol{\xi} - \boldsymbol{u}) \, a(\boldsymbol{u}) \, f_{\epsilon}(\boldsymbol{\epsilon}) \, f_{\boldsymbol{\xi}}(\boldsymbol{\xi}) \, d\boldsymbol{u} \, d\boldsymbol{\epsilon} \, d\boldsymbol{\xi}$$

Using the isotropic properties

$$C(y_0) = \frac{y_0^{1-\frac{d}{2}} \int_0^{+\infty} f^{\frac{d}{2}} \Gamma_0\left(\frac{f}{2\pi}\right) A_0\left(\frac{\alpha_0 f}{2\pi}\right) \Phi_{\epsilon}(\gamma_0 f) \Phi_{\xi}(\sigma_0 f) J_{\frac{d}{2}-1}(y_0 f) df}{\left(\frac{2^{d+1}\pi^{\frac{3d}{2}}}{\Gamma(\frac{d}{2})} \int_0^{+\infty} f^{d-1} \Gamma_0(f) |A_0(\alpha_0 f)|^2 df\right)^{\frac{1}{2}}}$$

with
$$\{y, \boldsymbol{\alpha}, \gamma, \boldsymbol{\sigma}\}_0 = \boldsymbol{\beta} \times \{\|\boldsymbol{y}\|, \boldsymbol{\alpha}, \gamma, \boldsymbol{\sigma}\}$$

1D cable, uniform saccades - & filter - Short Range Corr. \rightarrow analytical study (for $\eta = 0$)

$$\alpha_0 = 0.0 \qquad \qquad y_0 = 0$$

$$\alpha_0 = 0.0 y_0 = 0, 1, 1.5$$

• Existence of an optimal stochastic control

1D cable, uniform saccades - & filter - Short Range Corr. \rightarrow analytical study (for $\eta = 0$)

$$\alpha_0 = 0.0 y_0 = 0, 1, 1.5$$

- Existence of an optimal stochastic control
- \bullet Linear-like optimal noise amplitude versus y

1D cable, uniform saccades ____ & filter ___ - Short Range Corr. \rightarrow analytical study (for $\eta = 0$)

$$\alpha_0 = 0.0, 0.3$$

$$y_0 = 0.1, 0.3, 0.8, 1.2$$

- Existence of an optimal stochastic control
- \bullet Linear-like optimal noise amplitude versus y

1D cable, uniform saccades ____ & filter ___ - Short Range Corr. \rightarrow analytical study (for $\eta = 0$)

$$\alpha_0 = 0.0, 0.3, 0.8$$

$$y_0 = 0.1, 0.3, 0.8, 1.2$$

- Existence of an optimal stochastic control
- Linear-like optimal noise amplitude versus y when y_0 is higher than the visual width α_0

Same conclusions than in 1-D

Same conclusions than in 1-D

Student-r saccades

Hermite-Student-r filter

, Short Range Corr.

$$0.2$$
 0.15
 0.1
 0.5
 1
 1.5
 2
 2.5

$$\alpha_0 = 0.7$$

$$y_0 = 1.250, 1.50, 1.750$$
 $\eta = -0.5$

$$\eta = -0.5$$

• Optimal stochastic control provided that y > receptive width, but...

Student-r saccades

Hermite-Student-r filter -

$$\alpha_0 = 0.7$$

$$y_0 = 0.050, 0.100, 0.175$$
 $\eta = -0.5$

$$\eta = -0.5$$

- Optimal stochastic control provided that y > receptive width, but...
- also exist when y small...due the inhibition: fluctuations may compensate the inhibition; effect no more "local"; hyperacuity effect?

Student-r saccades

Hermite-Student-r filter

$$\alpha_0 = 0.7$$

$$y_0 = 0.050, 0.100, 0.175$$
 $\eta = -0.5$

$$\eta = -0.5$$

- Optimal stochastic control provided that y > receptive width, but...
- also exist when y small...due the inhibition: fluctuations may compensate the inhibition; effect no more "local"; hyperacuity effect?

Student-r saccades Hermite-Student-r filter

$$\alpha_0 = 0.7$$

$$y_0 = 0.050, 0.100, 0.175$$
 $\eta = -0.5, -0.8$

$$\eta = -0.5, -0.8$$

- Optimal stochastic control provided that y > receptive width, but...
- also exist when y small...due the inhibition: fluctuations may compensate the inhibition; effect no more "local"; hyperacuity effect?

Student-r saccades Hermite-Student-r filter

$$\alpha_0 = 0.7$$
 $y_0 = 0.050, 0.100, 0.175$ $\eta = -0.5, -0.8, -1.0$

$$\eta = -0.5, -0.8, -1.0$$

- Optimal stochastic control provided that y > receptive width, but...
- also exist when y small...due the inhibition: fluctuations may compensate the inhibition; effect no more "local"; hyperacuity effect?
- Robustness against η , noise distribution, γ_0 (spatio-temp. $\gamma_0^2 + \sigma_0^2$),...

Long Range Correlation

$$\alpha_0 = 0.5$$

$$\alpha_0 = 0.5$$
 $y_0 = 0, 0.1, 0.2$ $\eta = 1.5$

$$\eta = 1.5$$

- For large y, only for $y \gg \alpha$ due to long range correlation
- Same conclusion than in the short range correlation for small y: important since each sensor may be devoted to a neighbourhood of it

Long Range Correlation

$$\alpha_0 = 0.5$$

$$\alpha_0 = 0.5$$
 $y_0 = 0, 0.1, 0.2$ $\eta = 1.5, 2.0$

$$\eta = 1.5, 2.0$$

- For large y, only for $y \gg \alpha$ due to long range correlation
- Same conclusion than in the short range correlation for small y: important since each sensor may be devoted to a neighbourhood of it

Long Range Correlation

$$\alpha_0 = 0.5$$

$$y_0 = 0, 0.1, 0.2$$

$$\alpha_0 = 0.5$$
 $y_0 = 0, 0.1, 0.2$ $\eta = 1.5, 2.0, 2.5$

- For large y, only for $y \gg \alpha$ due to long range correlation
- Same conclusion than in the short range correlation for small y: important since each sensor may be devoted to a neighbourhood of it

SUMMARY

- Role of the saccades under the noise-enhanced processing point of view
- Hyperacuity effect? In the sense that the acquisition of information is "finer" than the sampling period
- Symmetry between random sampling and tremor: alias-free sampling & tremor + time-integration saccades as a way to perform the ensemble average?

OPEN QUESTIONS

- Hyperactuity induced by noise?

 taking the whole retina, as time goes on is necessary
- Mutual Shannon information: if $S \sim \mathcal{N}$, conditionally to the fluctuations, $S_r \sim \mathcal{N}$ and $(S, S_r) \sim \mathcal{N}$
 - Fixed time, $S_r \sim \mathcal{N}$, but (S, S_r) is a mixture of Gaussians
 - As time goes on, process S_r is itself a mixture of Gaussians
- What about the time effet, spatio-temporal filtering, the nonlinearities, posterior neural processes...
- Comparisons with real retinal process?
 - Fluctuation magnitude spectral characteristics of the scene (e.g. $\sigma_0^{\text{opt}} = \beta \sigma^{\text{opt}}$)?
 - Psychophysics experiments for validation...or not